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Abstract

This paper addresses the problem of inverse render-
ing from photometric images. Existing approaches for
this problem suffer from the effects of self-shadows, inter-
reflections, and lack of constraints on the surface re-
flectance, leading to inaccurate decomposition of re-
flectance and illumination due to the ill-posed nature of in-
verse rendering. In this work, we propose a new method
for neural inverse rendering. Our method jointly optimizes
the light source position to account for the self-shadows
in images, and computes indirect illumination using a dif-
ferentiable rendering layer and an importance sampling
strategy. To enhance surface reflectance decomposition,
we introduce a new regularization by distilling DINO fea-
tures to foster accurate and consistent material decomposi-
tion. Extensive experiments on synthetic and real datasets
demonstrate that our method outperforms the state-of-the-
art methods in reflectance decomposition.

1. Introduction

Inverse rendering aims to estimate the shape, materials, and
lighting of a scene from 2D images. It finds applications in
3D object digitization, object manipulation, and relighting.

Recently, neural representations have achieved signif-
icant success in novel-view synthesis and 3D modeling
[44, 46, 52, 75]. Neural radiance fields (NeRF), in partic-
ular, model a scene with a Multi-Layer Perceptron (MLP)
that maps 3D coordinates and view directions to color and
density, resulting in photorealistic rendering [44]. However,
NeRF lacks explicit modeling of surface reflectance and
lighting, making it unsuitable for relighting tasks. Several
methods have been proposed to incorporate physics-based
image formation models, enabling the explicit decomposi-
tion of reflectance and lighting [53, 83].

A branch of methods focuses on inverse rendering us-
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Figure 1. Reconstructed 3D assets inserted in a real game scene.

ing images captured under environmental illumination [7,
83, 85]. However, this presents a highly ill-posed problem
due to the complex interactions between shape, materials,
and lighting. Despite promising results, these methods of-
ten suffer from challenges such as the mingling of estimated
surface reflectance with illumination effects, especially for
real-world objects. In a different approach, IRON [84] has
proposed an approach for inverse rendering from photomet-
ric images (i.e., multi-view images captured by co-locating
a flashlight with a moving camera), yielding impressive re-
sults. Compared to environmental illumination, the flash-
light (resembling a point light model) simplifies the image
formation process, and the captured images contain high-
frequency details (e.g., specular highlights), which are ben-
eficial for reflectance estimation [11, 64].

However, IRON [84] presents several shortcomings.
Firstly, it assumes an ideal collocated camera-lighting ar-
rangement, neglecting the complications posed by self-
shadows that are frequently unfeasible in casual capture
contexts, like smartphone use. Secondly, it fails to con-
sider the diverse high-frequency inter-reflections character-
istic of multi-view images captured with flashlight illumi-
nation. Such oversights can lead to inaccuracies in the es-
timation of diffuse albedo, as it allows self-shadows to dis-
tort the outcomes or unintentionally incorporates specular
highlights, particularly within concave regions. Addition-
ally, the absence of effective reflectance regularization in
IRON undermines the precision of material decomposition.
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In this work, we introduce a novel method that leverages
rich shading information available in photometric images
to achieve robust inverse rendering. Notably, our approach
removes the necessity of co-locating the point light source
with the camera, instead opting for a joint optimization of
the light source’s position. This optimization accounts for
the intricate interplay between the object’s geometry and
the light source’s position, enabling our algorithm to effec-
tively deduce the presence of self-shadows and significantly
diminish their distorting impact on the resultant images.
To accurately simulate the effect of inter-reflections, our
method integrates an effective importance sampling strat-
egy alongside a differentiable rendering layer. These tech-
niques effectively reducing the unwanted blending of inter-
reflections on material properties. To alleviate the ambigu-
ity inherent from reflectance estimation, we incorporate a
DINO [9] feature regularization into our inverse rendering
framework. The self-supervised DINO method, by learning
from extensive unlabeled datasets, captures image features
encoding view-consistent contextual information across the
scene, providing valuable information to understand the re-
flectance properties of different image regions and advanc-
ing the accuracy of the decomposition process.

In summary, our key contributions are as follows:
• We propose a novel neural inverse rendering framework

tailored for photometric images that jointly optimizes ob-
ject shapes, materials and lighting, achieving accurate re-
flectance decomposition.

• We harness the shading cues present in photometric im-
ages to achieve robust inverse rendering. Our method
effectively models self-shadows and employs networks
alongside an importance sampling strategy for accurate
inference of high-frequency inter-reflections. This ap-
proach ensures a detailed and precise rendering by cap-
turing the subtle lighting interactions within the scene.

• We introduce the DINO feature regularization for surface
reflectance to group similar materials. Extensive experi-
ments show that our method outperforms existing meth-
ods in novel view synthesis and material decomposition.

• We present a new dataset contains 5 scenes captured by a
mobile phone in a darkroom. The number of images per
scene ranges from 120 to 400.

2. Related Work

Neural Scene Representation Neural scene representa-
tions have brought significant advancements to the fields of
novel-view synthesis [46, 52, 75]. The neural radiance field
(NeRF) [44] adopts a Multi-Layer Perceptron (MLP) to rep-
resent a scene by mapping a 3D coordinate and a view di-
rection to color and density, followed by volume rendering
for pixel color computation. To address the inherent noise
in the surface derived from the density field, various efforts
have leveraged the strengths of both volume rendering and

surface rendering to enhance surface geometry [47, 63, 76].
Many follow-up methods aim to improve the perfor-

mance of NeRF on different surfaces types. Ref-NeRF
[59] re-parameterizes NeRF’s outgoing radiance based on
the reflection of the viewing vector with respect to the lo-
cal normal vector, leading to improved rendering for spec-
ular surfaces [17, 90]. Some methods extend NeRF to
handle more complex scenes containing mirror surfaces
[20, 28, 57, 77, 81] and transparent objects [3, 48, 62].

However, NeRF [44] lacks explicit modeling of surface
reflectance and lighting, making it unsuitable for relighting
tasks. In this work, we focus on performing inverse render-
ing from photometric images.
Inverse Rendering with Environment Illumination A
subset of methods has emerged to jointly recover the shape,
materials, and lighting of objects [15, 24, 29, 32, 33, 39, 42,
54, 55, 78, 93] or entire scene [13, 31, 35, 49, 66, 70, 91]
using neural scene representation from multi-view images.
These methods consider an unknown distant environment
illumination, and adopt diverse representations for shapes
(e.g., density [85], SDF [83], and mesh [45]), illuminations
(e.g., spherical Gaussian [6] and pre-integrated lighting [7]),
and materials [2, 21, 41, 68, 79, 87]. Recently, several stud-
ies have emerged focusing on inverse rendering through the
application of 3D Gaussian splatting [16, 23, 34, 51]. The
primary contributions of these works revolve around accel-
eration, which is orthogonal to our approach.

Efficiently computing inter-reflections, which involve
tracing multiple bounces of rays, is a challenging prob-
lem in inverse rendering. Existing methods handle inter-
reflections by assuming fixed illumination among multi-
view images [14, 53, 67, 73, 74, 82, 86]. For example,
InvRender [86] introduces an indirect illumination MLP to
map a 3D point to its indirect incoming illumination, di-
rectly derived from the outgoing radiance field. However,
our setup involves each image being illuminated under a
different point light, making the existing approach unsuit-
able for our scenario.

To regularize the decomposition of reflectance, NeRFac-
tor [85] learns a data prior for BRDFs by training an auto-
encoder on the MERL dataset [43]. Some methods ap-
ply low-rank or vector-quantization regularization on the
reflectance [86, 88, 89]. In comparison, we introduce a
novel regularization without the need for additional train-
ing data by distilling the DINO [9] feature into the object’s
surface. In the context of neural representation, DINO has
been adopted in NeRF to scene editing [27] and grouping
semantic feature [26].
Inverse Rendering with Point Lights Different from
the environment illumination, a point light model simpli-
fies the image formation model and results in images with
more high-frequency details, such as specular highlights,
which significantly reduce ambiguity in inverse rendering
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Figure 2. Method overview. Our method optimizes the light source position to account for self-shadows and models inter-reflection. The
DINO features are injected into the networks of specular albedo and roughness to regularize the material decomposition.

[37, 58, 69, 80, 92]. Several methods have been proposed
to improve the accuracy of inverse rendering by utilizing a
point light model [4, 5, 8, 12, 19, 30, 71]. IRON [84] em-
ploys the NeuS method [63] to represent the surface and
utilizes an edge-aware physics-based surface rendering for
geometry refinement and materials estimation. However,
IRON assumes an ideal collocated camera-lighting setup
and overlooks self-shadows and inter-reflections. In con-
trast, our method addresses all these issues and explicitly
regularizes on surface reflectance to achieve more accu-
rate inverse rendering. While some methods compute shad-
ows during optimization, they typically assume the environ-
ment illumination [10, 60, 85] or known point light posi-
tions [36, 38, 56, 72]. Differently, our method utilizes self-
shadow cues to calibrate the light positions.

3. Method

3.1. Overview

Capturing Setting In this work, we focus on reconstruct-
ing object geometries, materials, and illumination condi-
tions from multi-view images lit by a flashlight. Previous
methods [12, 84] assume a collocated camera-light setup
and optimize the scene with a simplified rendering model.
Such an ideal setting is impractical to attain in our daily cap-
ture like mobile phone, we consider a more general fixed
setup akin to a camera mounted on a mobile phone. Our
method (Fig. 2) tackles the complexities introduced by self-
shadows, inter-reflections, and ambiguities in reflectance
estimation, which are prevalent issues in current techniques.

Rendering Equation In theory, the rendering equa-
tion [25] for a surface point x can be written as

Î(wo;x) =

∫
Ω

Li(wi;x)fr(wo,wi;x)(wi ·n) dwi, (1)

where Li(wi;x) denotes the incoming radiance arriv-
ing from direction wi, and fr(wo,wi;x) encapsulates
the surface’s bidirectional reflectance distribution function
(BRDF) at x. This equation calculates the outgoing radi-
ance Î(wo;x) of point x in the direction of wo by integrat-
ing all radiance contributions over the upper-hemisphere Ω
surrounding the surface normal n.

By assuming a point light and considering light visibility
and indirect lights, the rendering can be approximated as

Î(wo;x) = Li(wi;x)fr(wo,wi;x)(wi · n)
×fv(wi;x) + fir(wo;x),

(2)

where fv(wi;x) indicates the visibility of light along wi

at x that models self-shadows in the rendered image, and
fir accounts for the residual effects attributed to inter-
reflections.
Pipeline Our pipeline commences with estimating the ob-
ject’s geometry and surface diffuse albedo using the off-
the-shelf neural surface reconstruction framework, NeuS
[42]. Subsequently, we utilize physics-based rendering to
jointly refine the geometry and materials of the object as
well as the position and intensity of the flashlight. Our
approach leverages differentiable rendering techniques to
accurately model self-shadows and indirect illumination
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in photometric images, thereby achieving robust material
decomposition. Additionally, we reduce the ambiguities
of surface reflectance decomposition by integrating self-
supervised DINO [9] features from multi-view images. Our
method can export the mesh and texture maps of the opti-
mized 3D models, which can be seamlessly integrated into
conventional rendering pipelines.

3.2. Neural Scene Representation

Geometry Representation In our approach to represent-
ing scene geometry, the geometry is represented by the zero
level set of a SDF S =

{
x ∈ R3 | s(x) = 0

}
in line with

recent advancements in the field [63, 75, 86]. For any point
x ∈ R3, the signed distance s and a learned local geometric
feature descriptor of x are parameterized by a MLP, denoted
as fΘg

= (s,f geo) ∈ R× R256.
Color rendering for a pixel is achieved through the pro-

jection of a ray r(t) = o + td from the camera’s origin o,
extending in the view direction d. In the volumetric field,
the color C rendered from a pixel is obtained by integrating
along its ray path, with the integral approximated over N
discrete points as follows:

C(o,d) =

N∑
j=1

Tj (1− exp (−σjδj)) cj , (3)

where Tj = exp
(
−
∑j−1

q=1 σqδq

)
denotes the accumulated

transmittance at sampled point r(tj), and cj represents the
point’s color. We incorporate the unbiased density conver-
sion method [42], translating SDF values into density rep-
resentations for scene’s geometry.
Materials Representation To achieve physics-based ren-
dering, our framework decomposes the scene’s BRDF into
diffuse and specular components, utilizing the roughplastic
model for microfacet specular reflection [61]. The materials
at a point x include the diffuse albedo ρd, specular albedo
ρs, and roughness ρr. These spatially-varying BRDF pa-
rameters are encapsulated by MLPs with a positional en-
coding function and optimizable parameters Θd, Θs, Θr.

3.3. Light Source Optimization

Lighting Model The flashlight is modeled as a white point
light source, similar to the configurations in [11, 84]. We as-
sume the photographic equipment is in rigid capture setup,
such that the relative positions of the camera and point lights
are fixed across images.

Denoting the relative offset as a learnable parameter ∆o,
the incident light direction wi(x) and intensity Li(wi;x)
for a surface point x are defined as

wi(x) =
(o+∆o)− x

∥(o+∆o)− x∥2
, Li(wi;x) =

L

∥(o+∆o)− x∥2
,

(4)

where o is the camera center, and L represents the learnable
scalar intensity of the light.
Visibility Computation By leveraging the object’s geom-
etry and the point light’s position, we infer self-shadows and
mitigate their effects on the captured images. To make the
process differentiable, we sample N points along a direc-
tion from the point x to the light position, denoted as wi,
and calculate the visibility of a point as [85]:

fv(wi;x) = 1−
N∑
j=1

αj

j−1∏
k=1

(1− αk) , (5)

where αj is the discrete opacity values. We compute the
visibility online so that the object geometry and light posi-
tion can be jointly optimized.

3.4. Differentiable Inter-reflection Computation

Prior methods, like InvRender [86], sample multiple rays
and use an MLP to cache the indirect incoming illumination
at a surface point as smooth SGs under a static illumination,
hindering their application in scenes dynamically captured
under directional lighting, such as with a flashlight.

To address the issues of missing indirect illumination de-
tails and the high computational load, we propose an online
indirect illumination computation strategy based on impor-
tance sampling (see supp. for pipeline details).
Importance Sampling Inter-reflection occurs when light
reflects from one surface to another. We observe that the
specular surfaces exhibit more pronounced inter-reflections,
and the main source of indirect illumination for a surface
point x comes from its reflective direction wr, which is the
reflection of the view angle around the surface normal. To
efficiently compute the indirect light, we sample multiple
rays near wr for indirect radiance calculation. Initially, we
identify the secondary intersection point x′ where the indi-
rect bounce meets the surface, and then we compute the in-
coming radiance Lind(wi;x) as the outgoing radiance from
x′. Radiance rendering of the secondary intersection point
only takes into account the intense lighting from the flash-
light and x′, excluding points occluded from the flashlight.
The indirect illumination results from integrating all these
incoming radiances over the upper-hemisphere around x
surface normal.

To mitigate the artifacts of insufficient sampling, we
blend the radiance from incoming direction wi around the
reflective view using a learnable scalar γ. One straight-
forward parameterization approach involves mapping the
scalar from the point coordinates and the implicit geomet-
ric feature. However, we discovered that relying on point
position and local geometry information often restricts the
representation of varying inter-reflections, particularly in
concave areas. A more effective strategy involves utilizing
common physical properties (distance, view direction and

4



roughness) to deduce dynamic indirect illumination. Con-
sequently, we express the indirect illumination component
fir(x) as:

fir(x) = γ ·
∑
wi

Lind(wi;x)fr(wi,wo;x)(wi · n). (6)

3.5. DINO Regularization

To reduce the inherent ambiguity of reflectance estimation,
we introduce a novel reflectance regularization based on the
distilled DINO feature field. DINO [9] displays inherent
capabilities for object decomposition by training on diverse
unlabeled data, and has been successfully distilled into 3D
fields for radiance editing [27] and open-vocabulary object
grouping [26]. Inspired by these methods, we propose to
distill the DINO feature from 2D images to 3D surfaces
(object geometry) to learn a fine composition and contex-
tual information of the object, resulting in a more consistent
decomposition of surface reflectance and materials. In our
implementation, we distill the DINO feature to the initial
geometry field by minimizing the loss function:

Ldino =
∑
p

(f dino(x(p))− DINO(p))2, (7)

where p denotes the pixel in the 2D images, x(p) indicates
the corresponding 3D surface point derived by ray tracing.
The distillation process is minimizing the square distance
between the learnable DINO feature f dino on surface and
the ViTs pre-trained on 2D images. The distilled DINO fea-
tures are incorporated into the networks of specular albedo
and roughness, providing regularization to enhance the ac-
curacy of material decomposition.

In our experiment, we found the resolution of the DINO
feature will also influence the ability of distinguishing the
composition of objects. Higher resolution DINO features
can assist in achieving finer material decoupling. Empiri-
cally, we upsample the image by a scaling factor of two to
extract DINO features with a higher resolution.

3.6. Optimization

Differentiable surface point To make the surface point
differentiable, we reparameterize the surface intersection
equation as previous works [75, 84]:

xΘg
= x− n

nTn
SΘg

(x) = x− nSΘg
(x), (8)

where SΘg (x) denotes the SDF value of point x, n is the
normal vector at x calculated by n = ∇SΘg

(x).
Training Loss The optimization process is formulated as a
minimization problem where the total loss L is a combina-
tion of several components, each targeting a specific aspect
of the reconstruction:

L = Lrgb + Lssim + λ1Leik + λ2Lα + λ3Lsmooth + λ4Ldino.
(9)

Reference Image GTOursIRON

Figure 3. Visual results of self-shadows and inter-reflections.

Lrgb is the L2 loss computed on the Gaussian pyramids of
the predicted image Î and the reference image I . LSSIM is
the SSIM loss [65]. Leik is the Eikonal loss [18] to regular-
ize the MLP for a valid SDF. Lα is the roughness range loss,
set at 0.5. The first four loss terms are the same as IRON
[84]. Lsmooth is the smoothness loss on the specular albedo
and roughness as used by [74]. Ldino denotes the DINO fea-
ture alignment loss described in Eq. (7). During the inverse
rendering stage, the edge-aware surface rendering proposed
by IRON is adopted to refine the geometry [84].

4. Experiments

4.1. Datasets

Synthetic Data The synthetic dataset comprises six ob-
jects. Four objects with a variety of shapes and materials,
namely duck, maneki, horse, and dragon, are used in IRON
[84]. To conduct thorough analysis, we adopt another two
objects: marble bowl, a concave bowl with complex light
effects, and armchair with self-shadows in multiple views.

We consider a practical non-collocated flashlight and
camera setting, similar to a mobile phone setup, with the
angle between the camera and flashlight to the object center
set to about 3 degrees. We render 200 images from ran-
dom views under a non-collocated flashlight via Mitsuba
[22] for training. We also render 100 images together with
their diffuse albedo maps, specular albedo maps and rough-
ness maps for test images to evaluate the quality of novel
view synthesis and material decomposition.
Real Data We tested our method on the DRV dataset [5]
captured by a nearly collocated camera-flashlight setup, and
the Luan dataset [40] captured using a smartphone. We also
captured a dataset by an iPhone in a darkroom. Camera
poses for real images were derived using COLMAP [50].

4.2. Comparison with Existing Methods

For a fair comparison of material decomposition, we
adapted the physical shader in WildLight to roughplastic
model [61], as utilized by Mitsuba. We then integrated the
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Table 1. Quantitative comparison of novel view rendering results with other inverse rendering methods on the synthetic dataset.

Duck Maneki Horse Marble Bowl Dragon
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NeILF++ [82] 31.482 0.9775 0.0591 28.940 0.9498 0.0886 29.657 0.9640 0.0676 28.476 0.9336 0.0856 24.729 0.8986 0.1202
WildLight [12] - - - 29.913 0.9399 0.0787 32.032 0.9669 0.0520 28.219 0.9252 0.0981 26.546 0.9078 0.1155
IRON [84] 31.845 0.9855 0.0320 30.087 0.9550 0.0468 31.713 0.9808 0.0366 27.403 0.9602 0.0583 25.516 0.9257 0.0876
Ours 35.164 0.9912 0.0273 32.979 0.9729 0.0340 33.921 0.9851 0.0327 29.209 0.9640 0.0591 27.647 0.9391 0.0767

G
T

O
ur
s

IR
O
N

W
ild
Li
gh
t

Rendered Result Diffuse Albedo Specular Albedo Roughness Rendered ResultDiffuse AlbedoSpecular Albedo Roughness

N
eI
LF
++

Figure 4. Qualitative comparison of state-of-art methods and our method on the synthetic dataset. The materials of NeILF++[82] are Base
Color, Metallic, Roughness defined by simplified Disney principled BRDF and others are using Mitsuba roughplastic model.

decomposed material components along the rays to gener-
ate the material maps of the view. Comparison with the
methods on volume rendering method DRV [5] and the
mesh-based approach PSDR [40] were not conducted in our
study, as their codes are not available. We also compared
with other implicit methods presented by [82], which re-
cover neural fields while considering inter-reflections.

Our method can recover sharp inter-reflection details
and complex self-shadow caused by non-collocated cam-
era and flashlight (see Fig. 3), resulting in more accu-
rate specular albedo and roughness (see Fig. 4). Exist-
ing methods for the similar inverse rendering settings (i.e.,
IRON [84] and WildLight [12]) overlook inter-reflections
and self-shadows, leading to inaccuracy in material recover-
ing. Specifically, the diffuse albedo often blends indirect il-
lumination, particularly in concave areas. Self-shadows dis-
tort surface reflectance, leading to incorrect specular albedo
brightness and noisy roughness. The state-of-the-art im-

plicit method NeILF++ [82] tends to erroneously blend the
intensity of moving light sources into material properties.

Table 1 and Table 2 show the quantitative comparison
of rendering and material decomposition, respectively. We
can see that our method achieves more accurate results, es-
pecially in the estimation of specular albedo and roughness.

4.3. Results on Real Data

We compare our method with IRON on the challenging real
dataset. Figure 5 showcases the rendered images and ma-
terial decomposition results. Compared with IRON, our
method exhibits fewer shadows and indirect illumination ef-
fects baked into the diffuse albedo, given the credit to our
modeling of inter-reflection and lighting optimization.

Specifically, in the diffuse albedo of Xmen estimated by
IRON, the neck region bakes indirect illumination and ap-
pears brighter. In IRON’s result on Toy, self-shadows distort
the diffuse albedo, embedding shadows within the material.
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Table 2. Quantitative comparison on synthetic data. The predicted albedos are scaled to match the GT light intensity when evaluation.

Roughness Diffuse Albedo Specular Albedo View Synthesis RGB
Method MSE ×10−3 PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

WildLight [12] 106.32 25.631 0.9189 0.1186 17.357 0.8353 0.2016 29.167 0.9300 0.0929
IRON [84] 1.8402 33.175 0.9730 0.0432 25.809 0.8496 0.1645 29.053 0.9604 0.0558
Ours 0.8808 35.777 0.9805 0.0331 29.716 0.9136 0.1065 31.891 0.9700 0.0488

Rendered Result Diffuse Albedo Specular Albedo Roughness Rendered Result Diffuse Albedo Specular Albedo RoughnessReference

Figure 5. Visual results of material decomposition on real data. For each object, we compare the results of our method and IRON. Xmen is
from Luan dataset [40], Toy is a self-captured dataset, Pony and Girl are from the DRV dataset [5].

0°

w
/o
Li
gh
tO
pt
im
.

IR
O
N

Visual Results of Light Optimization

O
ur
s

2° 4° 8° 16°

SSIM 0.9257 SSIM 0.9371 SSIM 0.9144 SSIM 0.9102SSIM 0.9247

SSIM 0.9086 SSIM 0.8929 SSIM 0.8861 SSIM 0.8190SSIM 0.9247

SSIM 0.8185 SSIM 0.8369 SSIM 0.8077 SSIM 0.7758SSIM 0.8824

Figure 6. Quantitative and visual Results of Light Optimization.

With the DINO regularization, our method produces more
consistent reflectance decomposition (see Pony and Girl).

4.4. Ablation Studies

To gain a deeper insight into the efficacy of our approach,
we have conducted a thorough analysis of our method. We
evaluate the inter-reflection modeling, lighting optimiza-
tion, and DINO regularization, to validate our method.
Evaluation on Lighting Optimization We show the
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Figure 7. Ablation study on inter-reflection. We render scenes in
simplified collocated setting without self-shadows.

strength of our method in calibrating the camera-lighting
offset even in the extreme case. The quantitative and quali-
tative comparison in Fig. 6 shows that, without the light po-
sition optimization, the method fails to accurately estimate
materials with large light source deviation.
Evaluation on Inter-reflection Modeling The synthetic
data rendered for ablation study on inter-reflection is in col-
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Table 3. Quantitative comparison of material estimation on synthetic dataset under collocated camera-lighting (collocated setup).

Roughness Diffuse Albedo Specular Albedo View Synthesis RGB
Method MSE ×10−3 PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

WildLight [12] 104.62 27.449 0.7979 0.2320 19.518 0.8420 0.1747 30.520 0.8959 0.0943
IRON [84] 0.8264 33.616 0.9793 0.0419 31.231 0.9159 0.1084 33.827 0.9743 0.0405
Ours w/o Inter-reflect. 0.8112 34.966 0.9807 0.0318 32.500 0.9250 0.0951 34.382 0.9753 0.0393
Ours w/o f dino 0.7638 34.806 0.9812 0.0327 32.526 0.9182 0.1005 34.294 0.9755 0.0393
Ours 0.6226 35.075 0.9817 0.0316 33.128 0.9400 0.0854 34.804 0.9762 0.0391
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Figure 9. Relighting results with materials estimated our method.

located camera-lighting setting to overview self-shadows
and different physical shader settings used in different
methods. We ablate the inter-reflection calculation and
compare the results in Table 3 and Fig. 7. Our method
accurately estimates the materials and without the inter-
reflection modeling, the predicted specular albedo has ar-
tifacts and diffuse albedo baked the indirect illumination.
Evaluation on DINO regularization Similarly, we eval-
uate the DINO regularization under the collocated camera-
lighting setting for ablation study. Table 3 and Figure 8 (a)
shows the quantitative and visual results respectively. Our
decomposition results surpass other methods and we also
show the DINO regularization is much better than some em-
pirical regularization used in [14, 86]. The DINO feature
regularization can ease the inherent difficulty of reflectance
decomposition by grouping consistent contextual informa-
tion across the scene.

In addition, Fig. 8 (b) shows the influence of DINO fea-
ture resolution in reflectance decomposition, validating that
higher resolution of DINO features can assist in achieving

finer material decoupling.

4.5. Relighting Results

We relight the objects with estimated material properties
under two environments and show results in Fig. 9. This
highlights our method’s ability to precisely recover material
properties, thereby enabling further relighting applications.

5. Conclusion and Discussion
In this paper, we present a new and effective inverse ren-
dering approach for reconstructing object shapes, materi-
als, and lighting from photometric images. Our method
optimizes the light source position to account for self-
shadows and employs an online strategy for modeling inter-
reflections through a differentiable rendering layer. Addi-
tionally, we incorporate the DINO regularization to help
the decomposition of surface reflectance. Extensive ex-
periments on synthetic and real datasets demonstrate that
our method can address misalignments between camera and
light sources and surpass state-of-the-art methods in mate-
rial decomposition. Due to its ability to finely compose ob-
jects, DINO regularization has the potential for application
in other inverse rendering settings, such as those involving
environment illumination.
Limitations Our method has several constraints. Primar-
ily, we overlooks the consistency of novel views captured
by a moving flashlight in the geometry initialization stage.
Secondly, the BRDF model we employ is tailored for solid
reflective surfaces, thus our approach is not suitable for re-
flective surfaces. We leave these for our future works.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021. 2, 4, 5

[10] Ziyu Chen, Chenjing Ding, Jianfei Guo, Dongliang Wang,
Yikang Li, Xuan Xiao, Wei Wu, and Li Song. L-tracing:
Fast light visibility estimation on neural surfaces by sphere
tracing. In ECCV, 2022. 3

[11] Ziang Cheng, Hongdong Li, Yuta Asano, Yinqiang Zheng,
and Imari Sato. Multi-view 3d reconstruction of a texture-
less smooth surface of unknown generic reflectance. In
CVPR, pages 16226–16235, 2021. 1, 4

[12] Ziang Cheng, Junxuan Li, and Hongdong Li. Wildlight: In-
the-wild inverse rendering with a flashlight. In CVPR, 2023.
3, 6, 7, 8, 2

[13] Changwoon Choi, Juhyeon Kim, and Young Min Kim. Ibl-
nerf: Image-based lighting formulation of neural radiance
fields. arXiv preprint arXiv:2210.08202, 2022. 2

[14] Youming Deng, Xueting Li, Sifei Liu, and Ming-Hsuan
Yang. Dip: Differentiable interreflection-aware physics-
based inverse rendering. arXiv preprint arXiv:2212.04705,
2022. 2, 8

[15] Yue Fan, Ivan Skorokhodov, Oleg Voynov, Savva Ignatyev,
Evgeny Burnaev, Peter Wonka, and Yiqun Wang. Factored-
neus: Reconstructing surfaces, illumination, and materials of

possibly glossy objects. arXiv preprint arXiv:2305.17929,
2023. 2

[16] Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li
Zhang, and Yao Yao. Relightable 3d gaussian: Real-time
point cloud relighting with brdf decomposition and ray trac-
ing. arXiv preprint arXiv:2311.16043, 2023. 2

[17] Wenhang Ge, Tao Hu, Haoyu Zhao, Shu Liu, and Ying-Cong
Chen. Ref-neus: Ambiguity-reduced neural implicit surface
learning for multi-view reconstruction with reflection. arXiv
preprint arXiv:2303.10840, 2023. 2

[18] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. arXiv preprint arXiv:2002.10099, 2020. 5

[19] Heng Guo, Hiroaki Santo, Boxin Shi, and Yasuyuki Mat-
sushita. Edge-preserving near-light photometric stereo with
neural surfaces. arXiv preprint arXiv:2207.04622, 2022. 3

[20] Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, and Song-
Hai Zhang. Nerfren: Neural radiance fields with reflections.
In CVPR, pages 18409–18418, 2022. 2

[21] Yi-Hua Huang, Yan-Pei Cao, Yu-Kun Lai, Ying Shan, and
Lin Gao. Nerf-texture: Texture synthesis with neural radi-
ance fields. In SIGGRAPH, 2023. 2

[22] Wenzel Jakob. Mitsuba renderer, 2010. 5, 1
[23] Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaox-

iao Long, Wenping Wang, and Yuexin Ma. Gaussianshader:
3d gaussian splatting with shading functions for reflective
surfaces. arXiv preprint arXiv:2311.17977, 2023. 2

[24] Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Song-
fang Han, Sai Bi, Xiaowei Zhou, Zexiang Xu, and Hao Su.
Tensoir: Tensorial inverse rendering. In CVPR, 2023. 2

[25] James T Kajiya. The rendering equation. In Proceedings of
the 13th annual conference on Computer graphics and inter-
active techniques, pages 143–150, 1986. 3

[26] Justin* Kerr, Chung Min* Kim, Ken Goldberg, Angjoo
Kanazawa, and Matthew Tancik. Lerf: Language embedded
radiance fields. In ICCV, 2023. 2, 5

[27] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field dis-
tillation. In NeurIPS, 2022. 2, 5

[28] Georgios Kopanas, Thomas Leimkühler, Gilles Rainer,
Clément Jambon, and George Drettakis. Neural point cata-
caustics for novel-view synthesis of reflections. TOG, 2022.
2

[29] Zhengfei Kuang, Kyle Olszewski, Menglei Chai, Zeng
Huang, Panos Achlioptas, and Sergey Tulyakov. Neroic:
Neural rendering of objects from online image collections.
TOG, 2022. 2

[30] Yuandong Li, Qinglei Hu, Zhenchao Ouyang, and Shuhan
Shen. Neural reflectance decomposition under dynamic
point light. TCSVT, 2023. 3

[31] Zhen Li, Lingli Wang, Mofang Cheng, Cihui Pan, and Ji-
aqi Yang. Multi-view inverse rendering for large-scale real-
world indoor scenes. In CVPR, 2023. 2

[32] Ruofan Liang, Jiahao Zhang, Haoda Li, Chen Yang, Yushi
Guan, and Nandita Vijaykumar. Spidr: Sdf-based neural
point fields for illumination and deformation. arXiv preprint
arXiv:2210.08398, 2022. 2

9



[33] Ruofan Liang, Huiting Chen, Chunlin Li, Fan Chen, Sel-
vakumar Panneer, and Nandita Vijaykumar. Envidr: Implicit
differentiable renderer with neural environment lighting. In
ICCV, 2023. 2

[34] Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui
Jia. Gs-ir: 3d gaussian splatting for inverse rendering. arXiv
preprint arXiv:2311.16473, 2023. 2

[35] Zhi-Hao Lin, Jia-Bin Huang, Zhengqin Li, Zhao Dong,
Christian Richardt, Tuotuo Li, Michael Zollhöfer, Johannes
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Photometric Inverse Rendering: Shading Cues Modeling and Surface
Reflectance Regularization

Supplementary Material

1. More Details for the Method
1.1. Network Architectures

Neural SDF: fΘg
(x) = (s,f geo). We employ an 8-layer

MLP featuring a hidden dimension of 256 and incorporate
a skip connection at the fourth layer. The network input is
the 3D coordinate x encoded with a frequency of 6, to out-
put the SDF value and an implicit local geometric feature.
Before optimization, we perform geometric initialization on
the network, as described by [1].
Neural diffuse albedo: fΘd

(x,n,n,f) = ρd. We use an
8-layer MLP featuring a hidden dimension of 256 and a skip
connection at the fourth layer. The network inputs include
the 3D coordinate x encoded with 10 frequencies, surface
normal, and geometric feature. It outputs the diffuse albedo
for point x.
Neural specular albedo: fΘs

(x,n,f) = ρs. We employ
a 4-layer MLP with a width of 256. The input 3D coordinate
x is encoded using 6 frequencies.
Neural roughness: fΘr

(x,n,f geo) = ρr. We deploy a
4-layer MLP with a width of 256. The input 3D coordinate
x is encoded using 6 frequencies.
Blending scalar: γ (∥x− x′∥ ,wi · n, ρr) = γ. We use a
4-layer MLP with width 128. The the dot product of normal
and view direction uses 6 frequencies.
Neural DINO feature: fΘdino(x) = f dino We utilize a 4-
layer MLP with a width of 256, where the input location
x is encoded with 6 frequencies, and the output features a
dimension of 384.

1.2. Visibility Computation

For joint optimization of object geometry and light position,
we determine the visibility of a surface point x by uniformly
sampling N = 128 points {xi}Ni=1 along the path from sur-
face point x to the light source. We obtain the discrete opac-
ity values {α}Ni=1 for these points using the unbiased SDF
density conversion method introduced by NeuS [63]:

αi = max

(
Φs (f (p (ti)))− Φs (f (p (ti+1)))

Φs (f (p (ti)))
, 0

)
.

(10)

The light visibility of point x in the direction of incident
light wi is represented by the residual transmittance:

fv (wi;x) = 1−
N∑
j=1

αjTj , (11)

where αj is the density value at point xj , and Tj =∏j−1
k=1 (1− αk) is the light transmittance at point xj in the

direction wi.

1.3. Inter-reflection Computation

Importance Sampling To model the indirect illumination
in scenes dynamically captured with directional lighting, we
introduce an online computation approach that combines a
differentiable layer and an importance sampling strategy.
For a point x and view direction wi, we consider a single
light bounce and employ ray marching towards the reflec-
tive direction:

wr = 2× n−wi. (12)

We then identify the secondary intersection point x′. To
determine if x′ is occluded from the light source, we uni-
formly sample 20 points along the path between the light
source and the intersection point. The light is considered
occluded by another surface if any of the sampled points
exhibit a negative SDF value.

Figure 10 illustrates the process of inter-reflection mod-
eling. If the secondary intersection point x′ is unobstructed,
we compute the outgoing radiance at x′ using the flash-
light’s incoming radiance. The outgoing result is then com-
bined with the blending coefficient to represent the indirect
illumination.
Gradient Backpropogation Given that the blending coef-
ficient is conditioned on the roughness property of the 3D
point, there exists a correlation between the roughness prop-
erty and the blending coefficient, introducing additional
ambiguity in material estimation. In our experiments, we
found that detaching the roughness of the secondary inter-
section point x′ prior to its input into the blending coef-
ficient network leads to a more precise material decompo-
sition. Moreover, the process of gradient backpropagation
starts from the image loss, through the residual component
and into the material networks of the secondary intersection
point x′, fosters the alignment of secondary point radiance
with inter-reflection cues. In our experiments, we discov-
ered that disabling the optimization of local geometry at the
secondary point reduces the complexity of the optimization
process, leading to improved geometric reconstruction, es-
pecially in concave areas.

1.4. BRDF Renderer

Our BRDF implementation closely adheres to the Mitsuba
roughplastic BRDF model [22], with the distribution pa-
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Figure 10. The illustration of inter-reflection modeling. We take into account rays that are physically rendered at secondary intersection
points near the reflective direction of point x, as these rays contribute significantly to the indirect illumination.

rameter specifically set to ‘ggx’. For simplicity, we refer
to our configuration as the roughplastic model. Default val-
ues are maintained for the internal and external Indices of
Refraction and the nonlinear parameter.

Previous methods (IRON [84] and WildLight [12]) em-
ploying the renderer relied on an oversimplified BRDF
model within an idealized setting where the camera and
flashlight are collocated, neglecting the deviations between
the camera and light source present in our capture setup.
To address this limitation, we have enhanced the simplified
roughplastic model to accommodate a broader range of sce-
narios, allowing for variations in both incident and outgoing
light directions.

1.5. Training Details

The training process requires approximately 9 hours on a
single RTX3090 GPU with 24GB of memory. We start by
training NeuS over 100,000 iterations to initialize the ge-
ometry and diffuse albedo networks. For each training iter-
ation, we utilize 512 randomly sampled pixels, employing
an ℓ1 loss along with an eikonal regularization loss. Prior to
the rendering phase, we derive the feature maps of images
by the pre-trained ViT-S/8 model [9] and executed 10,000
iterations with λ4 set to 1.0 to extract the DINO feature
from 2D feature maps to 3D surfaces. During the physics-
based surface rendering stage with total 50,000 iterations,
we fixed the geometry and lighting to warmup the BRDFs
network for 2,000 iterations to stablize the process, and sub-
sequently, we carried out a joint optimization of the lighting,
geometry and BRDFs. The training of blending coefficient
network started at the 10,000th iteration. We set the size
of rendered image patch as 128 × 128 and loss weights to
λ1 = 10−4, λ2 = 0.1, λ3 = 10−5 and λ4 = 10−5. All

networks are optimized by corresponding Adam optimizers
with learning rate 10−4.

2. More Details for the Dataset

DRV Dataset We acquired the DRV dataset [5] from the
authors, comprising five scenes: Dragon, Girl, Pony, Tree,
and Cartoon. Each scene has approximately 400 images,
split between training and test sets. The dataset captures
images in a darkroom, utilizing a nearly collocated camera-
light setup.
Luan Dataset The Luan dataset [40] was captured using a
casual smartphone. We noticed that the images exhibit sig-
nificant noise and motion blur, together with varying expo-
sure times and white balance settings during capture. This
inconsistency introduces challenges in maintaining multi-
view consistency. We evaluated the scene Xmen, which in-
cludes 136 images, to compare novel view rendering and
material decomposition against the IRON method.
Self-captured Dataset For capturing real-world images,
we employed an iPhone 15 to shoot in RAW format, en-
suring a linear camera response. Across all photos, we
maintained consistent settings for the camera’s exposure
time, focus, and white balance. Specifically, the ISO
value and shutter speed (exposure time) were fixed at 100
and 1/250s, respectively, with the white balance adjusted
to 3,800 Kelvin degrees. Our collection encompasses 5
scenes: Toy, fruit, Panda, Assassin and Bear, with the num-
ber of images per scene varying from 120 to 400. Camera
poses were derived using COLMAP [50], and objects were
scaled to fit within a unit sphere based on the reconstructed
point cloud. The photography sessions took place in a dark-
room, positioning the camera 0.15 to 0.3 meters away from
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Figure 11. Qualitative comparisons with state-of-art methods on the synthetic dataset (dragon and horse). The materials of NeILF++[82]
are Base Color, Metallic, Roughness defined by simplified Disney principled BRDF.

each object. To achieve comprehensive coverage, we sys-
tematically moved the camera in a spiral pattern around the
subjects. The separation between the camera lens and the
flashlight on the iPhone, roughly 0.015m, results in an ap-
proximate 3-degree variation between viewing and lighting
angles at a standard distance of 0.25m from the object.

3. More Results and Comparisons
We primarily compare our results with those from IRON
[84] and WildLight [12]. Notably, WildLight was unable
to reconstruct the synthetic data for duck, and as such, its
results are not presented in the table within the main paper.

3.1. Results on Synthetic Data

In Table 4, we offer comprehensive results for each syn-
thetic scene captured under casual conditions. Additionally,
we provide a qualitative comparison of novel view render-
ing and material decomposition between our method and
earlier methods, as illustrated in Fig. 11. For the dragon
scene, our method produces a diffuse albedo with less in-
direct illumination incorporated into the materials. In the
horse scene, our material decomposition results demon-
strate a reduced influence of self-shadows, showing a closer
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Figure 12. Ablation study on inter-reflection in marble bowl.

alignment with the ground truth than those obtained with
IRON. Even in extreme concave regions, our method is
more robust than previous method as shown in Fig. 12.

3.2. Results on Real Data

In Fig. 14, we present our dataset’s novel view rendering
and material decomposition outcomes. The IRON method

3



Scene Method Roughness Diffuse Albedo Specular Albedo Novel View Synthesis
MSE ×10−3 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

duck
WildLight - - - - - - - - - -

IRON 2.640 24.693 0.9631 0.0483 18.669 0.9017 0.1075 31.845 0.9855 0.0320
Ours 1.059 34.871 0.9852 0.0355 23.402 0.9474 0.0730 35.164 0.9912 0.0273

maneki
WildLight 93.59 18.151 0.7351 0.4472 12.413 0.8114 0.2497 29.913 0.9400 0.0787

IRON 1.455 35.367 0.9805 0.0238 18.967 0.8369 0.1732 30.087 0.9550 0.0468
Ours 0.467 36.098 0.9880 0.0184 22.245 0.9371 0.0726 32.979 0.9729 0.0340

horse
WildLight 40.23 24.625 0.9507 0.1032 16.997 0.8401 0.2056 32.032 0.9669 0.0520

IRON 2.198 31.903 0.9826 0.0363 29.323 0.8701 0.1275 31.713 0.9808 0.0366
Ours 1.509 33.573 0.9880 0.0194 33.071 0.9259 0.0917 34.206 0.9831 0.0321

marble bowl
WildLight 165.2 22.613 0.8862 0.1379 15.600 0.8261 0.2135 28.219 0.9252 0.0981

IRON 0.321 29.258 0.9623 0.0518 35.035 0.8947 0.1553 27.403 0.9602 0.0583
Ours 0.172 29.881 0.9647 0.0493 39.972 0.9729 0.0660 29.209 0.9640 0.0591

dragon
WildLight 120.8 33.679 0.9208 0.1108 14.432 0.7840 0.2453 26.546 0.9078 0.1155

IRON 2.815 36.470 0.9675 0.0575 30.902 0.7610 0.2295 25.516 0.9257 0.0876
Ours 0.923 38.720 0.9735 0.0390 34.894 0.8152 0.1772 27.870 0.9406 0.0766

armchair
WildLight 117.9 30.116 0.9242 0.1282 15.748 0.8260 0.2136 29.126 0.9100 0.1200

IRON 1.612 41.361 0.9818 0.0416 21.960 0.8333 0.1938 27.752 0.9555 0.0734
Ours 1.155 41.518 0.9833 0.0370 25.442 0.8959 0.1438 31.916 0.9655 0.0642

Table 4. Complete results on the synthetic dataset.

Pony Girl Tree Dragon Cartoon Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

IRON [84] 29.269 0.9150 27.136 0.9326 31.641 0.9464 32.421 0.9317 30.773 0.9587 30.248 0.9369
Ours 30.092 0.9414 27.589 0.9365 31.765 0.9464 32.251 0.9306 30.975 0.9589 30.534 0.9428

Table 5. Quantitative comparison of novel view rendering on DRV dataset.

often incorporates indirect illumination into the diffuse
albedo, particularly in concave regions, as observed in the
Fruit scene. Additionally, specular albedoes produced by
IRON method are adversely affected by self-shadows and
inter-reflections, as highlighted in specific boxes.

In Table 5, we provide a quantitative comparison that
underscores the enhanced performance of our method com-
pared to IRON in terms of novel view rendering within
the DRV real dataset. Figure 15 and Fig. 16 comple-
ment this with side-by-side qualitative comparisons of our
method against IRON regarding to material decomposition.
Leveraging DINO regularization for surface decomposition,
which effectively clusters similar materials, our approach
produces more accurate results for material decomposition,
especially in scenarios with a skewed view distribution.
We observe that IRON’s evaluation metrics for the Dragon
scene slightly exceed those of our method, this disparity is
primarily due to its collocated camera-lighting setup, which
inherently minimizes the occurrence of self-shadows within
the scene.

3.3. Failure Case

Like many neural surface reconstruction methods, both
COLMAP and NeuS presuppose Lambertian observation to
guarantee multi-view consistency. Following the same ap-
proach as IRON, our method primarily depends on NeuS for
geometry initialization but struggles to reconstruct objects
with reflective surfaces, as depicted in Fig. 13. The surfaces

Reference Images NeuS normal Our normal

Figure 13. A failure case on bear with reflective surfaces.

reconstructed by NeuS and our method exhibit holes within
reflective regions.

4. Video Demos
In the video, we present more comprehensive results to
demonstrate the effectiveness of our design, along with ad-
ditional comparison cases between our method and other
inverse rendering methods. Furthermore, we render the re-
constructed 3D assets using a traditional graphical pipeline
to illustrate their practical applications.
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Figure 14. More visual results of material decomposition on our dataset.
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Figure 15. Visual results of material decomposition on DRV dataset.
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Figure 16. Visual results of material decomposition on DRV dataset (continued).
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