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Abstract

3D meshes are extensively employed in movies,
games, AR, and VR for their efficiency in ani-
mation and minimal memory footprint, leading
to the creation of a vast number of mesh se-
quences. However, creating dynamic textures for
these mesh sequences to model the appearance
transformations remains labor-intensive for pro-
fessional artists. In this work, we present Tex4D,
a zero-shot approach that creates multi-view and
temporally consistent dynamic mesh textures by
integrating the inherent 3D geometry knowledge
with the expressiveness of video diffusion mod-
els. Given an untextured mesh sequence and a
text prompt as inputs, our method enhances multi-
view consistency by synchronizing the diffusion
process across different views through latent ag-
gregation in the UV space. To ensure tempo-
ral consistency, such as lighting changes, wrin-
kles, and appearance transformations, we lever-
age prior knowledge from a conditional video
generation model for texture synthesis. Straight-
forwardly combining the video diffusion model
and the UV texture aggregation leads to blurry
results. We analyze the underlying causes and
propose a simple yet effective modification to
the DDIM sampling process to address this issue.
Additionally, we introduce a reference latent tex-
ture to strengthen the correlation between frames
during the denoising process. To the best of our
knowledge, Tex4D is the first method specifically
designed for 4D scene texturing. Extensive exper-
iments demonstrate its superiority in producing
multi-view and multi-frame consistent dynamic
textures for mesh sequences.

1. Introduction

3D meshes are widely used in modeling, computer-aided de-
sign (CAD), animation, and computer graphics due to their
low memory footprint and efficiency in animation. Visual
artists, game designers, and movie creators build numer-
ous animated mesh sequences for visual applications. How-
ever, creating vivid videos involves complex post-processing
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Figure 1. Tex4D application. Our synthesized dynamic textures
can be easily integrated into graphics pipelines.

steps, such as creating dynamic textures for appearance
transformations, as shown in Fig. 1. These steps are labor-
intensive and require specialized expertise by artists.

On the other hand, recent advancements in generative mod-
els have democratized content creation and demonstrated
impressive performance in image and video synthesis. For
instance, video generation models (Ho et al., 2022; Esser
et al., 2023; Li et al., 2023; He et al., 2022; Yu et al., 2023a;
Zhou et al., 2022; Hong et al., 2022; Yang et al., 2024;
Zhang et al., 2023b; Xing et al., 2023; Chen et al., 2023c;
2024) trained on large-scale video datasets (Bain et al., 2021;
Schuhmann et al., 2021) allow users to create realistic video
clips from various inputs such as text prompts, images, or
geometric conditions. However, these text-to-video gener-
ation models, which are trained solely on 2D data, often
struggle with spatial consistency when applied to multi-view
image generation (Tang et al., 2023; Shi et al., 2023b; Liu
et al., 2023a; Weng et al., 2023; Long et al., 2023; Shi et al.,
2023a; Kwak et al., 2023; Tang et al., 2024; Voleti et al.,
2024) or 3D object texturing (Cao et al., 2023; Liu et al.,
2023b; Richardson et al., 2023; Huo et al., 2024).

To address these limitations, two main approaches have
been developed. One approach (Richardson et al., 2023;
Chen et al., 2023b; Cao et al., 2023) focuses on resolving
multi-view inconsistency in static 3D object texturing by
synchronizing multi-view image diffusion processes. While
these methods produce multi-view consistent textures for
static 3D objects, they do not address the challenge of gen-
erating dynamically changing textures for mesh sequences.
Another approach (Guo et al., 2023a; Lin et al., 2024; Peng
et al., 2024) aims to generate video clips based on the ren-
dering (e.g., depth, normal or UV maps) of an untextured
mesh sequence. To encourage temporal consistency, these
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Figure 2. Given an untextured mesh sequence and a text prompt as inputs (Left), Tex4D generates multi-view, dynamic textures. On the
right, we show renderings of the textured meshes from three views and four timestamps. Zoom in to view the texture details.

methods modify the attention mechanism in 2D diffusion
models and utilize inherent correspondences in a mesh se-
quence to facilitate feature synchronization between frames.
Although these techniques can be adapted for multi-view
image generation by treating camera pose movement as tem-
poral motion, they usually produce inconsistent 3D texturing
due to insufficient exploitation of 3D geometry priors.

In this paper, we introduce a novel task: 4D scene textur-
ing. Given an animated untextured 3D mesh sequence and a
text prompt, our goal is to generate dynamic textures that
are both temporally and multi-view consistent. We aim to
texture 4D scenes while capturing temporal variations, such
as lighting and appearance changes, to produce vivid vi-
sual results—a key requirement in downstream tasks like
character generation. Unlike existing works, we fully lever-
age 3D geometry knowledge from the mesh sequence to
enforce multi-view consistency. Specifically, we develop a
method that synchronizes the diffusion process from differ-
ent views through latent aggregation in the UV space. To
ensure temporal consistency, we employ prior knowledge
from a conditional video generation model for texture se-
quence synthesis and introduce a reference latent texture to
enhance frame-to-frame correlations during the denoising
process. However, naively integrating the UV texture aggre-
gation into the video diffusion process causes the variance
shift problem, leading to blurry results. To resolve this issue,
we propose an effective modification to the DDIM (Song
et al., 2020) sampling process by rewriting the equation.
Our method is computationally efficient thanks to its zero-
shot nature. The textured mesh sequence can be rendered
from any camera view, thus supporting various applications
in content creation. Our key contributions are:

* We present Tex4D, a zero-shot pipeline for generating
high-fidelity dynamic textures that are temporally and
multi-view consistent, utilizing text-to-video diffusion
models and mesh sequence controls.

* To leverage priors from existing video diffusion models,
we develop an effective modification to the DDIM sam-
pling process to address the variance shift issue caused by
multi-view texture aggregation and design a background
learning module.

* We introduce a reference UV blending mechanism to es-
tablish correlations during the denoising steps, addressing
self-occlusions, and synchronizing the diffusion process
in invisible regions.

* Our method is not only computationally efficient, but also
demonstrates comparable if not superior performance to
various state-of-the-art baselines.

2. Related Work

Video Stylization and Editing. Video diffusion models
have shown remarkable performance in the field of video
generation. These models learn motions and dynamics from
large-scale video datasets using 3D-UNet to create high-
quality, realistic, and temporally coherent videos. Although
these approaches show compelling results, the generated
videos lack fine-grained control, inhibiting their application
in stylization and editing. To solve this issue, inspired by
ControlNet (Zhang et al., 2023a), SparseCtrl (Guo et al.,
2023a) trains a sparse encoder from scratch using frame
masks and sparse conditioning images as input to guide the
video diffusion model. CTRL-Adapter (Lin et al., 2024)
proposes a trainable intermediate adapter to connect the



features between ControlNet and video diffusion models.

Meanwhile, (Tumanyan et al., 2023) observed that the
spatial features of T2I models play an influential role
in determining the structure and appearance, Text2Video-
Zero (Khachatryan et al., 2023) uses a frame-warping
method to animate the foreground object by T2I models
and (Wu et al., 2023; Ceylan et al., 2023; Qi et al., 2023)
propose utilizing self-attention injection and cross-frame at-
tention to generate stylized and temporally consistent video
using DDIM inversion (Song et al., 2020). Subsequently,
numerous works (Zhang et al., 2023c; Cai et al., 2024; Yang
et al., 2023; Geyer et al., 2023; Eldesokey & Wonka, 2024)
generate temporally consistent videos utilizing T2I diffusion
models by spatial latent alignment without training. How-
ever, the synthesized videos usually show flickerings due to
the empirical correspondences, such as feature embedding
distances and UV maps, which are insufficient to express
the continuous content in the latent space. Another line of
work (Singer et al., 2022; Bar-Tal et al., 2022; Blattmann
et al., 2023; Xu et al., 2024; Guo et al., 2023b) is to train ad-
ditional modules on large-scale video datasets to construct
feature mappings, for example, Text2LIVE (Bar-Tal et al.,
2022) applies test-time training with the CLIP loss, and
MagicAnimate (Xu et al., 2024) introduced an appearance
encoder to retain intricate clothes details.

Texture Synthesis. With the rapid development of foun-
dation models, researchers have focused on applying their
generation capability and adaptability to simplify the pro-
cess of designing textures and reduce the expertise required.
To incorporate the result 3D content with prior knowledge,
earlier works (Khalid et al., 2022; Michel et al., 2021; Chen
et al., 2022) jointly optimize the meshes and textures from
scratch with the simple semantic loss from the pre-trained
CLIP (Radford et al., 2021) to encourage the 3D align-
ment between the generated results and the semantic priors.
However, the results show apparent artifacts and distortion
because the semantic feature cannot provide fine-grained
supervision during the generation of 3D content.

DreamFusion (Poole et al., 2022) and similar models (Lin
et al., 2023; Wang et al., 2023; Po & Wetzstein, 2024; Met-
zer et al., 2022; Chen et al., 2023a) distill the learned 2D
diffusion priors from the pre-trained diffusion models (Rom-
bach et al., 2021) to synthesize the 3D content by Score Dis-
tillation Sampling (SDS). These methods render 2D projec-
tions of the 3D asset parameters and compare them against
reference images, iteratively refining the 3D asset parame-
ters to minimize the discrepancy of the target distribution
of 3D shapes learned by the diffusion model. Although
these approaches enable people without expertise to gener-
ate detailed 3D content by textual prompt, their results are
typically over-saturated and over-smoothed, hindering their
application in actual cases. Another line of optimization-

based methods (Yu et al., 2023b; Zeng et al., 2024; Ben-
sadoun et al., 2024) turned to fuse 3D shape information,
such as vertex positions, depth maps, and normal maps,
with the pre-trained diffusion model by training separate
modules on 3D datasets. Still, they require a specific UV
layout process to achieve plausible results.

Recently, TexFusion (Cao et al., 2023) and numerous zero-
shot methods (Liu et al., 2023b; Richardson et al., 2023; Huo
et al., 2024) have shown significant success in generating
globally consistent textures without additional 3D datasets.
Based on depth-aware diffusion models, they sequentially
inpaint the latents in the UV domain to ensure the spatial
consistency of latents observed across different views. Then,
they decode the latents from multiple views and finally
synthesize the RGB texture through back projection.

However, these methods generate static 3D assets and over-
look temporal changes in visual presentations, such as
videos. To our knowledge, this is the first approach to
synthesize multi-view dynamic textures for mesh sequences,
enabling appearance transformations.

3. Preliminaries

Video Diffusion Prior. In this paper, we adopt CTRL-
Adapter (Lin et al., 2024) as our prior model to provide
dynamic information. CTRL-Adapter aims to adapt a pre-
trained text-to-video diffusion model to conditions for vari-
ous types of images, such as depth or normal map sequences.
The key idea behind CTRL-Adapter is to leverage a pre-
trained ControlNet (Zhang et al., 2023a) and to align its
latents with those of the video diffusion model through
a learnable mapping module. Intuitively, the video diffu-
sion model generates temporally consistent video frames
that capture dynamic elements like character motions and
lighting, while the ControlNet further enhances this capa-
bility by allowing the model to condition on geometric in-
formation, such as depth and normal map sequences. This
makes CTRL-Adapter particularly effective in providing a
temporally consistent texture prior to our 4D scene textur-
ing task. Specifically, we leverage the depth-conditioned
CTRL-Adapter model. Given a sequence of depth images
denoted as {Dy,..., Dx} and a text prompt P, CTRL-
Adapter (denoted as C) synthesizes a frame sequence F'
by F =C({Ds,...,Dk},P).

DDIM Sampling. DDIM (Song et al., 2020) is a widely
used sampling method in diffusion models due to its superior
efficiency and deterministic nature compared to DDPM (Ho
et al., 2020). To enhance numerical stability and prevent
temporal color shifts in video diffusion, numerous mod-
els (Zhang et al., 2023b; Ho et al., 2022) employ a learning-
based sampling technique known as v-prediction (Salimans
& Ho, 2022). At each denoising step, the sampling process



for the latents (denoted as z;) can be described as follows:
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where o is the noise variance at time step t, €y is the es-
timated noise from the U-Net denoising module, which is
expected to follow A (0,7), and 2¢(z:) denotes the pre-
dicted original sample (i.e., the latents at timestep 0). After
the v-parameterization, the predicted original sample 2¢(z;)
and the predicted epsilon €y(z;) are computed as follows:

20(zt) = Va2 — V1 — - €,
€g(zt) =v/ar-€g+vV1—ay-z.
We leverage an enhanced DDIM sampling process in video

diffusion models, along with a multi-view consistent texture
aggregation mechanism to synthesize 4D textures.
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@

4. Method

Given an untextured mesh animation and a text prompt, our
goal is to generate a multi-view and multi-frame consistent
texture sequence for each mesh that aligns with both the text
description and motion cues while capturing the dynamics
from video diffusion models.

To optimize computational efficiency, we uniformly sam-
ple K key frames from the video and synthesize textures
for these keyframes. Textures for the remaining frames
are then generated by interpolating the key frame tex-
tures. Formally, given K animated meshes at the keyframes
({M, ..., Mk}), along with a text description P, our
method produces temporally and spatially consistent UV
maps denoted as {UV4, ..., UV}, in a zero-shot manner.

Previous texture generation methods (Richardson et al.,
2023; Chen et al., 2023b; Cao et al., 2023) typically inpaint
and update textures sequentially using pre-defined camera
views in an incremental manner. However, these approaches
rely on view-dependent depth conditions and lack global
spatial consistency, often resulting in visible discontinuities
in the assembled texture map. This issue arises from error
accumulation during the autoregressive view update process,
as noted by (Bensadoun et al., 2024). To resolve these is-
sues, rather than processing each view independently, recent
methods (Liu et al., 2023b) propose to generate multi-view
textures simultaneously through diffusion. In this work, we
similarly leverage the UV space as an intermediate repre-
sentation to ensure multi-view consistency.

4.1. Overview

As shown in Fig. 3, given a sequence of K meshes, we start
by rendering the mesh at V' predefined, uniformly sampled

camera poses to obtain multi-view depth images (denoted
as{D11,...,01,K,D21..., Dy k }), which serve as the ge-
ometric conditions. To generate textures for each mesh, we
initialize V' x K noise images sampled from a Normal
distribution (denoted as {zb!, .. 2K 221 VK1)
Additionally, we initialize an extra noise map sequence
{zl}, e z,f( } for the backgrounds learning. This noise map
corresponds to the texture of a plane mesh that is com-
posited with the foreground object at each diffusion step
(See Sec. 4.3). Next, for each view v € {1,...,V'}, we ap-
ply the video diffusion model (Lin et al., 2024) discussed
in Sec. 3 to simultaneously denoise all latents and ob-
tain multi-frame consistent images as {I*, ..., [%?} =
C({D1y,...,Dk v}, P), where P is the provided text
prompt. Finally, we un-project and aggregate all denoised
multi-view images for each mesh to formulate temporally
consistent UV textures.

Applying the video diffusion model independently to each
camera view often results in multi-view inconsistencies. In-
spired by (Liu et al., 2023b; Huo et al., 2024; Zhang et al.,
2024), we aggregate the multi-view latents of each mesh in
the UV space to merge observations across different views
at each denoising step, and then render latent from the latent
texture to ensure multi-view consistency. Furthermore, we
composite the rendered foreground latents with the back-
ground latents at each diffusion step (discussed in Sec. 4.2),
which is essential to exploit prior in the video diffusion
model (see Fig. 11). Nonetheless, such a simple aggregation
method introduces blurriness in the final results. In Sec. 4.3,
we analyze the underlying causes and propose a simple yet
effective method to enhance the denoising process. Addi-
tionally, we create a reference UV to handle self-occlusions
and further improve temporal consistency in Sec. 4.4.

4.2. Multi-view Latents Aggregation in the UV Space

We describe the aggregation of multi-view latents in the
UV space. For frame k € {1,..., K}, we aggregate the
multi-view latents {z1* ... 2V"*} in the UV space by:

_ e RTY(E"E, ) © cos (6Y)°
Z}J/:l cos (6v)”

T (2F) )

where R ™! represents the inverse rendering operator that
un-projects the latents to the UV space, thus R~ (2%, ¢,,)
produces a partial latent UV texture from view v, cos(6")
is the cosine map buffered by the geometry shader, record-
ing the cosine value between the view direction and the
surface normal for each pixel, « is a scaling factor, and
¢, denotes one of the predefined cameras. After multi-
view latents aggregation, we obtain multi-view consistent
latents by rendering the aggregated UV latent map using
z"% =R (T*;¢,), where R is the rendering operation.
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Figure 3. Overview. Given a mesh sequence and a text prompt as inputs, Tex4D generates a UV-parameterized texture sequence that is
both globally and temporally consistent. At each diffusion step, latent views are aggregated into UV space, followed by multi-view latent
texture diffusion to ensure global consistency. To maintain temporal coherence and address self-occlusions, a Reference UV Blending
module is applied at each step. Finally, the latent textures are back-projected and decoded to produce RGB textures for each frame.

4.3. Multi-frame Consistent Texture Generation

The aggregation process discussed above yields multi-view
consistent latents {2?:*} for the denoising steps. However,
this simple aggregation and projection strategy leads to
a blurry appearance, as shown in Fig. 6(b). This issue
arises primarily because the aggregation process depicted in
Eq. 3 derails the DDIM denoise process. Specifically, the
estimated noise €y(z;) for each step in Eq. 1 is expected to
follow N(0,Z), but Eq. 3 indicates that after aggregating
multi-view latents, the expected norm of variance of the
noise distribution would be less than Z. We denote this as
the “variance shift” issue caused by the texture aggregation.

To resolve this issue, we rewrite the estimated noise €y as the
combination of the t-step latent z; and the estimated latent
20(z;) at step 0. The v-paramaterized predicted epsilon
€g(z:) in Eq. 2 is can be equivalently expressed as:

€0 = (Vi -z — 20(2t)) /V1 —
€p(z) =ar-€g+ V91— -z

o N e
= 1 ta . (\/Oétzt—Zo(Zt))—‘r 1—Oét c Zt.
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“
In practice, we carry out this denoising technique in the UV
space. Specifically, we first compute the original texture
map (i.e., texture map at step 0, denoted as 7y) by aggregat-

ing the predicted original multi-view image latents through
Eq. 3. The noisy latent texture map at time step ¢ (denoted
as 7;) can be similarly computed. We denoise in step ¢ by:

Tio1 = a1 -To+

(Vi - a4 vi=a 7). ©

Through experimentation, we observe that background op-
timization plays a crucial role in fully exploiting the prior
within the video diffusion model. As shown in Fig. 6(c),
using a simple white background leads to blurry results.
This may be attributed to a mismatch between the white-
background images and the training dataset, which likely
contains fewer such examples, affecting the denoising pro-
cess. To resolve this issue, we compute the final latents
as the combination of the foreground latent Z;_; projected
from the aggregated UV latents and the residual background
latent 23, ;1 denoised by diffusion models. Specifically, we
composite the estimated latents in the ¢t — 1 step as follows:

I—apq-

211 =21 OMgg+2p-10 (1 —Myg), (6)
Zi—1, Mg =R (Ti—15¢0) 7

where M, represents the foreground mask of the mesh.

To summarize, our diffusion process starts with K X
(V' + 1) randomly initialized noise maps sampled (i.e.,



{z;:k, . ,z¥’k}, for foreground, {2z}, ..., zX} for back-
ground) and denoise them into images simultaneously. At
each denoising step ¢ with the key frame k, we derive

the estimated noises {e;",, ..., €, } using the video dif-
fusion model and calculate the estimated original latent
{ﬁé’k, .,£X’k} by Eq. 1. Then, we use Eq. 3 to aggre-

gate the latents onto UV space. Next, we utilize Eq. 5
to take the diffusion step in the UV space, and render
the synchronized latents {Z;" ..., /"% } from latent UVs
{TL,,..., T,5,} to ensure multi-view consistency. Finally,
we composite the denoised latent with the latents at step
t — 1 according to foreground masks by Eq. 6 and Eq. 7.

4.4. Reference UV Blending

While the video diffusion model ensures temporal consis-
tency for latents from each view, consistency can sometimes
diminish after aggregation in the texture domain. This is-
sue primarily stems from the view-dependent nature of the
depth conditions and the limited resolution of latents, which
can lead to distortions when features from different camera
angles are combined onto the UV texture. Additionally,
self-occlusion during mesh animation often results in a loss
of information in invisible regions.

To address these challenges, we propose a reference UV
map to enhance correlations between latent textures across
frames. Specifically, the reference UV map is constructed by
sequentially combining latent textures over time, with each
new texture filling only the empty texels of the reference
UV map. Then, each texture is blended using the reference
UV Ty with a mask My, that labels the visible region:

TF=(1-XN -TF+ - Tuv)QM’Z{v”itv@(l - MZV)

®)
where ) is the blending weight for the reference UV in the
visible region, while the invisible region is simply replaced
with the reference texture. We empirically set the blending
weight to 0.2 during our experiments.

5. Experiments

Datasets. We source our datasets from two primary reposi-
tories: human motion diffusion outputs and the Mixamo and
Sketchfab websites. We employ the text-to-motion diffusion
model (Tevet et al., 2023) to compare our approach with La-
tentMan (Eldesokey & Wonka, 2024). For comparison with
Generative Rendering (Cai et al., 2024), we obtain animated
characters from the Mixamo platform and render them with
different motions. Specifically, we first use Blender (Com-
munity, 2024) to extract meshes, joints, skinning weights,
and animation data from the FBX files. Then, we apply
linear blend skinning to animate the meshes. For meshes
without UV maps, we utilize XATLAS to parameterize the
mesh and unwrap the UVs.

Baselines. To our knowledge, no existing studies tackle
multi-view consistent video generation guided by untex-
tured mesh sequences as our method does. We adopt six re-
cent methods, rendering the input (untextured mesh renders
and depth maps) based on their configurations to establish
baselines, including video stylization methods and video
generation methods with various control mechanisms. PnP-
Diffusion (Tumanyan et al., 2023) is an image style transfer
method conditioned on the DDIM inversion attention fea-
ture of the input image. We extend the method to stylize
videos on a frame-by-frame basis for comparison, aligning
with previous work (Geyer et al., 2023). Built upon cross-
frame attention, Text2Video-Zero (Khachatryan et al., 2023)
guides the video by warping latents to enhance video dy-
namics implicitly. We leverage its official extension, which
includes support for depth control. TokenFlow (Geyer et al.,
2023), Generative Rendering (Cai et al., 2024), and Latent-
Man (Eldesokey & Wonka, 2024) study frame relations in
latent space and establish feature correspondences through
nearest neighbor matching and DensePose features. Gen-
1 (Esser et al., 2023) is a video-to-video model that learns
the structure of input videos and transforms the untextured
mesh renders into stylized outputs. Given the lack of the
source code for Generative Rendering, we utilize the experi-
mental results presented in their video demos for qualitative
comparison. Additionally, we compare our method with the
texture generation method Text2Tex (Chen et al., 2023b).

Evaluation Metrics. Quantitatively evaluating multi-view
consistency and temporal coherence remains challenging.
We conduct a user study to assess overall performance, in-
cluding the appearance, temporal coherence and spatial con-
sistency, and the fidelity to prompt based on human prefer-
ence. Additionally, we measure multi-view coherence using
Fréchet Video Distance (FVD) (Unterthiner et al., 2018), a
video-level metric for temporal coherence utilized in prior
works (Li et al., 2024; Xie et al., 2024).

5.1. Qualitative Results

We present qualitative evaluation in Fig. 7. Generative Ren-
dering, TokenFlow, and Text2Video-Zero, which rely on T2I
diffusion models with cross-frame attention mechanisms,
exhibit noticeable flickering compared to other methods.
This issue stems partly from the empirical and implicit cor-
respondence mapping used to enforce interframe latent con-
sistency, as the correspondences in the latent space may not
precisely align with those in the RGB space. In contrast,
our approach interpolates the frames between key frame
textures in RGB space, eliminating artifacts caused by latent
manipulation. PnP-Diffusion edits frames independently
and generates detailed and sophisticated appearances but
suffers from poor spatio-temporal consistency due to the
loss of temporal correlations in the latent space. While
Gen-1 produces high-quality videos, it fails to maintain
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Figure 5. Comparison with texture generation method. We com-
pare our method against texture generation method Text2Tex (Chen
et al., 2023b), which shows empty texels in invisible regions.

multi-view consistency.

Furthermore, we present multi-view results showcasing
a variety of styles and prompts in Fig. 4. Our method,
driven by video diffusion models, effectively accounts for
the styles and captures temporal variations over time. As
shown in Fig. 5, Tex4D effectively handles the invisible
regions compared with the traditional texture generation
method Text2Tex (Chen et al., 2023b).

5.2. Quantitative Evaluation

To quantitatively assess the effectiveness of our proposed
method, we follow prior research (Eldesokey & Wonka,
2024; Geyer et al., 2023; Esser et al., 2023) and conduct
a comprehensive A/B user study. Our study involved 67
participants who provided a total of 1104 valid responses
based on six different scenes drawn from six previous works,
with each scene producing videos from two different views.
During each evaluation, participants were presented with
rendered meshes and depth conditions viewed from two
angles, serving as motion references. They were shown a
pair of videos: one generated by our approach and the other
from a baseline method. Participants were asked to select
the method that exhibited superior performance in three
criteria: 1) appearance quality, 2) spatial and temporal con-
sistency, and 3) fidelity to the prompts. Table 1 summarizes
the preference percentage of our method over the baseline
methods. Our method significantly surpasses state-of-the-
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Figure 6. Ablation studies on the multi-view denoise algorithm
and backgrounds. (a) Denoise by DDIM mechanism (Eq. 1). (b)
Denoise views {z:—1} and project to UV space. (c) Denoise with
a white background. (d) Our full algorithm.

art methods by a large margin. In addition, our method
achieves lower FVD that demonstrates better multi-view
consistency in generated video clips.

5.3. Ablation Study

Ablation for texture aggregation. In Fig. 6 (a) and (b),
we present two alternative texture aggregation methods. In
Fig. 6 (a), we un-project 2o(z;) and €y(z;) into UV space
for aggregation. In Fig. 6 (b), we map z;_; to the UV
space. Both these two approaches show inferior results
compared to our method, which verifies the effectiveness of
the proposed texture aggregation algorithm.

Ablation for UV blending module. In Sec. 4.4, we propose
a reference UV blending schema to resolve the temporal
inconsistency caused by latent aggregation. To validate the
effectiveness of this mechanism (See Sec. 4.4), we conduct
an ablation study by disabling the reference UV blending
module (setting A to 0). As shown in Fig. 8, without the
UV blending module, our method generates textures with
noticeable distortions on the Joker’s face over time.

Ablation for background priors. Sec. 4.3 discusses the
importance of including a plausible background prior. To
verify the effectiveness of this design, we replace the learn-



Table 1. Quantitative evaluation. We present FVD values and a comparison highlighting the percentage of user preference for our
approach against other methods. Our method shows the best spatio-temporal consistency as measured by the FVD metric (Unterthiner

et al., 2018). Users consistently favored Tex4D over all baselines.

Method ‘ FVD () Appearance Quality Spatio-temporal Consistency Consistency with Prompt
Text2Video-Zero | 3078.94 89.33% 91.78% 91.55%
PnP-Diffusion 1390.04 86.42% 87.18% 89.74%
TokenFlow 1330.43 92.31% 86.84% 93.42%

Gen-1 3114.26 70.27% 75.00% 77.78%
LatentMan 2811.23 86.57% 86.57% 81.82%

Ours 1303.14 - - -

PnP-Diffusion

Text2Video-Zero

Gen-1

Generative Rendering

Ours

TokenFlow

“a Stormtrooper is Swimming”

Figure 7. Qualitative comparisons of multi-view video generation. We compare our method against PnP-diffusion (Tumanyan et al.,
2023), TokenFlow (Geyer et al., 2023), Text2Video-Zero (Khachatryan et al., 2023), Generative Rendering (Cai et al., 2024) (from their
video demo), and Gen-1 (Esser et al., 2023). We generate videos in the front view and the side view (blue box) on Mixamo dataset. Our
method generates vivid videos that align with the textual prompts while preserving spatial consistency.

t=12
(w/o UV Blending)

Figure 8. Ablation study on the reference UV blending module.
Without this module, the generated textures may lose consistency
over time, as highlighted in the red boxes.

able background latents with an all-white background while
keeping all other parts unchanged. Fig. 6 (c) illustrates
that this ablation experiment produces significantly blur-
rier textures compared to our full method, highlighting the
importance of background learning.

t=0

t =12 (Ours)

6. Conclusions

In this paper, we present Tex4D, a zero-shot approach that
generates multi-view, multi-frame consistent dynamic tex-
tures for untextured, animated mesh sequences based on a
text prompt. By incorporating texture aggregation in the UV
space within the diffusion process of a conditional video
diffusion model, we ensure both temporal and spatial co-
herence in the generated textures. To leverage priors from
existing video diffusion models, we develop an effective
modification to the DDIM sampling process to address the
variance shift issue caused by multi-view texture aggrega-
tion and design a background learning module. Additionally,
we enhance temporal consistency by introducing a reference
UV map and developing a dynamic background learning
framework to produce fully textured 4D scenes. Extensive
experiments show that our method can synthesize realistic
and consistent 4D textures, demonstrating its superiority
against state-of-the-art baselines.
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A. More Implementation Details
A.1. Implementation Details

We utilize the CTRL-Adapter (Lin et al., 2024), trained on the video diffusion model I2VGen-XL (Zhang et al., 2023b), as
the backbone for generation, with the denoising steps set to 7" = 50. Initially, we center the untextured mesh sequence and
pre-define six different viewpoints around the Y-axis in the XZ-plane, uniformly sampled in spherical coordinates, along
with an additional top view with an elevation angle of zero and an azimuth angle of 30°. For latent initialization, we first
sample Gaussian noise on the latent textures and then render 2D latent samples for each view to improve the coherence of
the generated outputs. During denoising, we upscale the latent resolution to 96 x 96 to reduce aliasing. We empirically set
the blending coefficient to 0.2. It takes approximately 30 minutes to generate a video with 24 keyframes taken on an RTX
A6000 Ada GPU. We decode the denoised latents in keyframes to RGB images, and then un-project and aggregate these
images to transform the latent UV maps to RGB textures as previous works (Liu et al., 2023b; Cao et al., 2023; Huo et al.,
2024). Finally, we interpolate the textures of the keyframes at intervals of 3 to synthesize the final video clips.

A.2. Denoising Algorithm of Our Method

We present the complete workflow of our method in Algorithm 1. For clarity, we omit the notation for the latent variables 2,
representing the background plane texture, as they follow the same scheme as the foreground latents. The reference UV map
Tury is constructed by progressively combining latent textures over time, with each new texture filling only the unoccupied
texels in the reference UV map. We denote this process as “Combine” in the following workflow.

Algorithm 1 Tex4D

Input: UV maps UV = {UV4,...,UVk}; depth maps D = {D1,1,...,D1,v,D21,..., Dk v }; text prompt P; CTRL-Adapter
model C; rendering operation R; unproject operation R ~!; cameras ¢; T diffusion steps; 7 latent textures (including foreground and

background); A blending weight; k keyframes

Tr ~ N(0,7) /I Sample noise in UV space
Zrp, Miy = R(Tr; c)

ZpT ~ N(O,I)

z=2r =2r O Mg + 2,7 © (1 — My,) /I Composite latents

Fort=1T,...,1do
zp1-1 < C(z,4; D, P)

€9 + C(z4;; D, P) // Estimate noise from C
2o(z)=var-ze—vV1I—a €
To, Myy < R7! (20;c,UV) // Bake textures by Eq. 3

Tirv = Combine(7o; Muyy)
Forkinl,..., K do

TEy = Voo TE+ VT — o ( Tl (VaTF —TH +vI—a;- 77“) // Denoise Eq. 5
T = ((1 —N)-TEL A+ 72,1\;) © lefn; +Tuy © (1 - lef,v) // Blend textures by Eq. 8
2,571, Mfg =R (7;71; C,UV)
Zt1 =21 OMpg+ 251 O (1 — My,) // Composite latents by Eq. 6
Z = Zt-1
Output: z
A.3. V-Prediction

Tex4D is a zero-shot approach built on a pre-trained conditional video diffusion model, where v-prediction is a technique com-
monly used in video diffusion models (e.g., 2VGen-XL (Zhang et al., 2023b), Imagen (Ho et al., 2022), CogVideoX (Hong
et al., 2022; Yang et al., 2024), CogView3 (Zheng et al., 2024)) to accelerate the training and prevent temporal color shifts.
In our method, we utilize CTRL-Adapter (Lin et al., 2024), a conditional video diffusion model that guides video by depth
maps trained on the DDIM v-prediction mechanism. Hence, we use v-prediction to ensure the proper functioning of the
conditional video diffusion model.
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Figure 9. Tex4D Applications. Our synthesized dynamic textures can be easily integrated into graphics pipelines. We utilize the shader
editor in Blender to animate textures with image sequence nodes. The dynamic textures help technical artists render vivid videos without
additional lighting and mesh controls.

B. More Qualitative Results
B.1. Graphics Application and Video Demo

As shown in Fig. 9, Tex4D demonstrates its utility in the graphics pipeline by integrating dynamic texture sequences
into Blender for rendering. This integration enables seamless visualization of animated textures directly on 3D models,
showcasing Tex4D’s capability to handle complex visual dynamics in real-world applications. We highly recommend the
reviewers watch our supplementary videos for details.

B.2. Multi-view Results

In Fig. 15, we present additional characters generated by Tex4D, showcasing the method’s effectiveness and its ability
to generalize across a diverse array of styles and prompts. We also evaluate Tex4D on non-human character animations
in Fig. 16, demonstrating its robust generalization capabilities across various types of mesh sequences. In each case, we
provide two different views to show that our method can ensure multi-view consistency.

To emphasize the temporal changes in the generated textures, we also design some prompts, for example, ‘flashed a magical
light’, ‘dramatic shifts in lighting’, ‘cyberpunk style’ in our experiments. As shown in Fig. 16, the results of ‘ghost’,
‘King Boo’ and ‘Snowman’ validate the effectiveness of our method in generating different level of temporal changes by a
variety of textual prompts, while maintaining the consistency both spatially and temporally. Additionally, we provide a
supplementary video that includes baseline comparisons and multi-view results for all examples.

B.3. Texture Results

In this section, we present the texture sequences, which are the intermediate results of our pipeline. Our method utilizes
XATLAS to unwrap the UV maps from meshes without human labor. XATLAS is a widely used library for mesh
parameterization and UV unwrapping, commonly integrated into popular tools and engines, facilitating efficient texture
mapping in 3D graphics applications. As shown in Fig. 10, our method seamlessly bakes temporal changes, including
lighting variations, wrinkles, and appearance transformations, directly into the textures, removing the need for manual
post-production by technical artists.

C. More Ablation Results

Ablation on Background To show the effects of various background latent initialization strategies, we provide additional
examples, including the approach used in the texture synthesis method (Liu et al., 2023b) and a background that contrasts
sharply with the foreground object, as shown in Fig. 11. In detail, SyncMVD (Liu et al., 2023a) encodes the backgrounds
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“the King Boo flashes a magical Light, causing dramatic shifts in Lighting.”
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Figure 10. Visualization of generated textures for mesh sequences. Our method effectively incorporates temporal changes, such as
lighting variations and appearance transformations, directly into the textures, eliminating the need for post-production by technical artists.

with alternative random solid color images. For the high-contrast background experiment, we use the latents obtained from
the DDIM inversion of highly contrasted foreground and background to initialize our latents.

D. More Method Comparisons
D.1. Comparison with Depth-Conditioned Video Diffusion Models

While depth-conditioned video diffusion models effectively generate visually compelling results from a single viewpoint,
they often struggle to maintain consistent multi-view representations of a single object, such as a character, across different
perspectives. To highlight this limitation, we present multi-view results from the depth-conditioned video diffusion model in
Fig. 13. The primary cause of this issue is that depth conditions are inherently view-dependent, in contrast to UV maps,
which provide global information about the 3D space, enabling a unique mapping for each 3D point across all views.

D.2. Comparison with Textured Mesh Animations

In this section, we highlight the differences between our method and traditional approaches, demonstrating the effectiveness
of 4D texturing in capturing temporal variations (e.g., lighting and wrinkles) within mesh sequences to produce vivid visual
results. Traditional methods typically involve texturing a base mesh (often called a clay mesh) and animating it using
skinning techniques. This animated sequence is then refined by technical artists who control scene lighting or simulate
cloth dynamics to achieve the final visual presentation. This process is labor-intensive and demands specialized expertise in
cinematic production and technical engines.

In contrast, our method presents a streamlined alternative by directly integrating complex temporal changes into mesh
sequences. As shown in Fig. 4, 15 and 16, our approach effectively captures intricate temporal effects such as cloth wrinkles,
dynamic lighting, and evolving appearances using textual prompts, significantly simplifying the workflow while maintaining
high-quality results.
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(¢) Ours w/o background priors (foreground composited with our background)

Figure 11. More ablation study on the background priors. We present three ablations, including the approach used in the texture
synthesis method SyncMVD (Liu et al., 2023b), a background that contrasts sharply with the foreground, and without background priors.

We demonstrate the limitations of traditional textured mesh animation in handling complex temporal changes in Fig. 12.
Specifically, we employ the Text2Tex (Chen et al., 2023b) to generate the texture for the input mesh in T-pose and render it
from multiple viewpoints. To ensure a fair comparison, we composite the rendered results with the background generated by
our method. Notably, the ‘ghost’ and ‘snowman’ examples exhibit visible seams during animation due to self-occlusions are
common appeared in dynamic poses but cannot be accurately predicted during T-pose texture generation. This results in
empty texels and disrupts the visual continuity of the animation.

E. User Study

We show each participant 30 pairs of videos synthesized by different methods, capturing the same object from different
views. For each pair, each participant is asked three questions in sequence:

* Which method has better appearance quality?
* Which method has better spatial and temporal consistency?
* Which method has better fidelity to the prompts?

F. Limitations and Discussion

One limitation of our method is the lack of seamless integration between the generated textures and the background, resulting
in a disjointed appearance where the foreground and background elements may seem artificially stitched together. However,
the dynamic textures remain globally consistent and can be directly applied to the downstream tasks, as shown in Fig. 9. To
the best of our knowledge, no existing work tackles the foreground and background texture generation together because
the task is computationally expensive, and the scene-level dataset is limited. Addressing the scene-level 4D texturing
remains an open challenge that we aim to explore in future work. In addition, we notice that our method is relatively
computationally intensive compared with other texture synthesis methods. The running time of our method primarily
depends on the foundation model CTRL-Adapter, which takes approximately 5 minutes to generate a 24-frame video.
We anticipate efficiency improvements with advancements in conditioned video diffusion models to further enhance the
practicality of Tex4D.
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Figure 12. Results of textured mesh animation. We present the visual results of Text2Tex (Chen et al., 2023b) with our backgrounds.
Text2Tex fails to capture temporal variations between frames and results in empty texels in invisible regions.
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Figure 13. Multi-view results from conditioned video diffusion models. The conditioned video diffusion models struggle to maintain
consistent multi-view representations of a single object due to the depth condition being view-dependent.
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Please find the method that has best spatial and temporal consistency. The prompt is "a Stormtrooper swimming"
Videos are capturing the same object from different views.

& 3% (1/30)

Please find the method that has best spatial and temporal consistency. The prompt is "a cyberpunk walks"
Videos are capturing the same object from different views.

13% (4 / 30)

Please find the method that has best fidelity to the prompt. The prompt is "Ironman turns steering wheel"
Videos are capturing the same object from different views.

Figure 14. User Study. We provide more visual examples and include quantitative results from our user study. We evaluate the videos
from three metrics: Appearance Quality, Spatial and Temporal Consistency, and Fidelity to the Prompt.
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“a sketch of bot dancing in a sandy beach, Van-Gogh style!
Figure 15. More qualitative results. We present the results of Tex4D with brief prompts, demonstrating the ability of Tex4D to generate
multi-view consistent textures.
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Figure 16. More qualitative results on non-human character animations. We present the results of Tex4D with prompts emphasizing
the dynamics, demonstrating the ability of Tex4D to capture the dynamics from video diffusion models.
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